Practice Test I Linear Algebra

1. Given the matrices A and B:

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \\ 3 & 0 \end{bmatrix} \quad B = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix}$$

- a. (5 points) What is the domain for AB? What is the codomain for AB?
- b. (5 points) What is the domain for BA? What is the codomain for BA?
- c. (15 points) Is AB invertible? If it is, find $(AB)^{-1}$. If AB isn't invertible, explain (prove) why it isn't.
- d. (15 points) Is BA invertible? If it is, find $(BA)^{-1}$. If BA isn't invertible, explain (prove) why it isn't.
- 2. Consider the linear transformation *T* as seen below. Answer the questions that follow with sufficient, convincing detail.

$$T((x, y, z)) = (x + z, y, -y + z)$$

- a. (10 points) Find the standard matrix A associated with T.
- b. (10 points) Is A injective? Either prove that it is, or find two vectors $\vec{u} \neq \vec{v}$ such that $A\vec{u} = A\vec{v}$.
- c. (10 points) Is A surjective? Either prove that it is, or find a vector \vec{b} such that there does not exist a vector \vec{x} with $A\vec{x} = \vec{b}$.
- d. (10 points) If A is both injective and surjective, find A^{-1} . If A isn't bijective, explain (prove) why it isn't.
- 3. (25 points) Set up, **but do not multiply out**, all of the matrices, including the data matrix D, required to rotate a unit square $\pi/49$ radians* in the counter-clockwise direction around the point (3, 3). The vertices of the square are at (3, 3), (4, 3), (4, 4), and (3, 4).
- * I don't care about the exact numbers for the trig; just write the appropriate formulae.